XVI Congress of the European Biological Rhythms Society

Lyon, France

25 - 29 August 2019
Dear colleagues, friends and EBRS participants,

It is our great pleasure to welcome you to the XVI Congress of the European Biological Rhythms Society (EBRS), from 25–29 August 2019, in Lyon, France.

This year’s congress brings together the top chronobiologists and sleep experts from around the world. They will tell us all about their most recent findings and best scientific stories, and what to expect in the future, in chronobiology and chronomedicine. The sessions cover molecular biology, non-visual photobiology, chrononutrition, chronomolecules, metabolism, imaging, mathematical modelling, big data, machine learning, shift work, cancer... And more!

The meeting will be a unique opportunity to share your ideas, benefit from exchanges and discussions with colleagues, and disseminate your own results on a worldwide stage. Trainees and early-career researchers will be offered a five-star Trainee Day with the best researchers in the field.

The conference will be attended by over 390 participants from 34 countries. And with 9 plenary lectures, 24 symposia, 2 panel discussions, 72 invited symposia speakers, 72 short communications, and over 200 posters, the week promises to be very exciting!

We look forward to seeing you in Lyon, and we hope you enjoy the congress.

Claude Gronfier
Congress Chair

Debra J. Skene
EBRS President

Yoshitaka Fukada
JSC President

in association with
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELCOME TO EBRS 2019</td>
<td>2</td>
</tr>
<tr>
<td>COMMITTEES & ORGANISATION</td>
<td>4</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>6</td>
</tr>
<tr>
<td>PROGRAM</td>
<td></td>
</tr>
<tr>
<td>Sunday 25, August</td>
<td>7</td>
</tr>
<tr>
<td>Monday 26, August</td>
<td>8</td>
</tr>
<tr>
<td>Tuesday 27, August</td>
<td>10</td>
</tr>
<tr>
<td>Wednesday 28, August</td>
<td>12</td>
</tr>
<tr>
<td>Thursday 29, August</td>
<td>14</td>
</tr>
<tr>
<td>SHORT COMMUNICATIONS</td>
<td>16</td>
</tr>
<tr>
<td>POSTERS</td>
<td>20</td>
</tr>
</tbody>
</table>
COMMITTEES & ORGANISATION

COMMITTEES

Organizing Committee

Claude Gronfier
Lyon Neuroscience Research Center

Alain Nicolas
Lyon Neuroscience Research Center

Francoise Perrot
Lyon Neuroscience Research Center

Scientific Committee

Steven Brown
Department of Pharmacology and Toxicology
University of Zurich
Switzerland

Claude Gronfier
Lyon Neuroscience Research Center
Inserm, CNRS, University of Lyon
France

Sato Honma
Graduate School of Medicine
Hokkaido University
Japan

Andries Kalsbeek
Netherlands Institute for Neuroscience
Amsterdam
The Netherlands

Martha Merrow (Chair)
Institute of Medical Psychology
Ludwig-Maximilian University (LMU)
Munich
Germany

Frank Scheer
Division of Sleep Medicine
Harvard Medical School
Boston
USA

Valérie Simonneaux
Institut des Neurosciences Cellulaires et Intégratives
Université Louis Pasteur
Strasbourg
France

EBRS2019 ORGANISATION

Organisation/Registration
contact@ebrs2019.com

BP 29
59370 Mons en Baroeul
Dates and opening hours

<table>
<thead>
<tr>
<th>Date</th>
<th>Congress</th>
<th>Registration</th>
<th>Poster Sessions</th>
<th>Exhibition</th>
<th>Trainee Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, 25 August</td>
<td>16:45 - 20:00</td>
<td>14:00 - 16:30</td>
<td></td>
<td></td>
<td>09:00 - 16:20</td>
</tr>
<tr>
<td>Monday, 26 August</td>
<td>09:00 - 20:00</td>
<td>08:30 - 18:00</td>
<td>13:00 - 14:30</td>
<td>08:45 - 20:00</td>
<td></td>
</tr>
<tr>
<td>Tuesday, 27 August</td>
<td>09:00 - 20:00</td>
<td>08:45 - 18:00</td>
<td>13:00 - 14:30</td>
<td>08:45 - 20:00</td>
<td></td>
</tr>
<tr>
<td>Wednesday, 28 August</td>
<td>09:00 - 18:30</td>
<td>08:45 - 18:00</td>
<td>13:00 - 14:30</td>
<td>08:45 - 20:00</td>
<td></td>
</tr>
<tr>
<td>Thursday, 29 August</td>
<td>09:00 - 18:30</td>
<td>08:45 - 18:00</td>
<td>13:00 - 14:30</td>
<td>08:45 - 20:00</td>
<td></td>
</tr>
</tbody>
</table>

Address venue

Faculté de Médecine Laennec
7, rue Guillaume Paradin
69008 Lyon, France
Map and details are available on the website of the congress

Congress Dinner

Wednesday, 28 August at 19:30
Registration are closed

Badges

Each registered participant will receive a name badge upon arrival. For organisational and security reasons, we request that all participants and exhibitors wear their badges at all times during congress activities.

Abstract book

Abstract book is available on the website of the congress: www.ebrs2019.com

Wi-Fi

Each registered participant will receive a login and a password upon arrival.
ACKNOWLEDGEMENT

EBRS2019 is grateful to the following institutions and organisations for their support of the XVI Congress of the European Biological Rhythms Society.
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 16:20</td>
<td>TRAINEE DAY
Organized by the Young Researchers Committee of the EBRS. Program is available on the website of the congress.</td>
</tr>
<tr>
<td>14:00 - 16:30</td>
<td>ATTENDEES REGISTRATION</td>
</tr>
<tr>
<td>16:45 - 17:00</td>
<td>CONGRESS OPENING
Amphi 1</td>
</tr>
<tr>
<td>17:00 - 18:00</td>
<td>PLENARY LECTURE
METABOLIC CONSEQUENCES OF BEHAVIORAL AND PATHOLOGICAL DISRUPTIONS OF THE CIRCADIAN SYSTEM
E. van Cauter
Amphi 1
Chairs : Debra Skene & Claude Gronfier</td>
</tr>
</tbody>
</table>
| 18:00 - 20:00| **WELCOME RECEPTION**
(DRINKS AND SNACKS WILL BE SERVED)**
08:45 - 09:00 WELCOME COFFEE

09:00 - 10:00 PLENARY : AXELROD LECTURE
MOLECULAR BASIS OF SEASONAL CHANGES IN BEHAVIOR
Chair : Andrew Loudon
T. Yoshimura

10:15 - 12:15 SYMPOSIUM 1
MOLECULAR MECHANISMS I
Chair : Florian Heyd

10:15 Cellular and molecular pathways from the visual system to the clock
neurons in Drosophila
F. Rouyer

10:45 Short Communications - See details in page 16

11:15 Coffee Break

11:45 Short Communications - See details in page 16

12:30 Space-time logic of the liver
F. Naef

13:00 - 14:30 LUNCH BREAK & POSTER SESSION 1
14:30 - 17:15
Amphi 1

SYMPOSIUM 4
THE IMMUNE SYSTEM AND DAILY TIMING
Chair: Andrew Loudon

- 14:30 > Circadian control of inflammation and bacterial infection in the lung
 D. Ray
- 15:00 > Choreographing immunity - a role for the circadian clock
 L. Ince
- 15:30 > The circadian clock of CD8 T cells modulates their early response
 to vaccination and the rhythmicity of related signaling pathways
 N. Cermakian
- 16:00 > Coffee Break
- 16:30 > Short Communications - See details in page 16

Amphi 3

SYMPOSIUM 5
NON-PHOTIC ENTRAINMENT: NOVEL CONNECTIONS FROM ENVIRONMENT TO CLOCKS
Chair: Shigenobu Shibata

- 14:30 > Timing of feeding schedules for circadian synchrony
 C. Escobar
- 15:00 > Non-photic entrainment: novel connections from environment to clocks
 H. Oster
- 15:30 > Light-independent function of the Suprachiasmatic nuclei to regulate
 the food-uptake of mice
 J. Ripperger
- 16:00 > Coffee Break
- 16:30 > Short Communications - See details in page 16

Amphi 4

SYMPOSIUM 6
NON-CIRCADIAN RHYTHMS
Chair: Helen Causton

- 14:30 > In the light of sun and moon
 K. Tessmar-Raible
- 15:00 > Molecular basis of tidal rhythms in an intertidal crustacean
 Eurydice pulchra
 L. Zhang
- 15:30 > Once superabundant now at the brink of extinction – why
 chronotopes matter
 S. Monecke
- 16:00 > Coffee Break
- 16:30 > Short Communications - See details in page 16

17:30 - 18:30
Amphi 1

PLENARY LECTURE
INTERACTIONS OF CIRCADIAN RHYTHMS AND SLEEP WITH BASIC PHYSIOLOGY
Chair: Martha Merrow

19:00 - 20:00
Amphi 4

PANEL DISCUSSION
REINVENTING SCIENCE COMMUNICATION: HOW CAN OUR PUBLIC RELATIONS HELP WITH TRANSLATION?
Chairs: Martha Merrow & Samer Hattar

A. Sehgal
K. Wu
The Honorable Pavel Svoboda
TUESDAY 27 AUGUST

08:45 - 09:00 WELCOME COFFEE

09:00 - 10:00 PLENARY : JSC LECTURE
MODIFICATIONS OF CRY PROTEINS BOLSTER CIRCADIAN CLOCK OSCILLATION
Chair : Ken Ichi Honma

10:15 - 13:00 SYMPOSIUM 7
MOLECULAR MECHANISMS II
Chair : Urs Albrecht

10:15 > Consequences of time- and region-specific ablations of an SCN-enriched mouse transcription factor P. Nolan
10:45 > ATPase-based *in vitro* Screening for KaiC Clock Mutants in Cyanobacteria S. Akiyama
11:15 > Coffee Break
11:45 > Dynamic Plasticity of the Arabidopsis Circadian Oscillator in Response to Sugar Signals A. Webb
12:15 > Short Communications - *See details in page 17*

Amphi 3 SYMPOSIUM 8
CLOCKS, SLEEP AND HEALTH (ESRS-EBRS JOINT SYMPOSIUM)
Chairs : Debra Skene & Tom de Boer

10:15 > The moon is a weak Zeitgeber for menstrual cycles in women C. Helfrich-Förster
10:45 > MTNR1A variant across life span S. Sulkava
11:15 > Coffee Break
11:45 > Neural circuits underlying sleep structure and oscillation A. Adamantidis
12:15 > Short Communications - *See details in page 17*

Amphi 4 SYMPOSIUM 9
MICROBIAL CLOCKS
Chair : Martha Merrow

10:15 > Circadian rhythms in non-photosynthetic bacteria Z. Chen
10:45 > Challenging the Topological Plasticity of a Core-Oscillator: Exploring the Evolution of Circadian Circuitry and Visualizing the Emergence of a Primordial Visual System Capable of Eidetic Memory L. Larrondo
11:15 > Coffee Break
11:45 > Circadian Organization of the Enteric Commensal Bacterium, *Klebsiella aerogenes* V. Cassone
12:15 > Short Communications - *See details in page 17*

13:00 - 14:30 LUNCH BREAK & POSTER SESSION 2
14:30 - 17:15
SYMPOSIUM 10
CLOCK NETWORKS IN THE BRAIN
Chair : Rae Silver

14:30 > Multiple brain clocks regulating behavior rhythms of mammals
S. Honma

15:00 > Imaging the Intact SCN network in vivo
A. Davidson

15:30 > Astrocytic-neuronal communication in the specification of circadian time
M. Brancaccio

16:00 > Coffee Break

16:30 > **Short Communications - See details in page 17**

Amphi 1

SYMPOSIUM 11
THE CLOCK AND PUBLIC HEALTH
Chair : Charles Czeisler

14:30 > Light at night, circadian rhythms and public health
C. Czeisler

15:00 > Shift work involving circadian disruption, cancer risk, and beyond: current state of the science
E. Schernhammer

15:30 > Night work and breast cancer risk: a combined analysis of 5 population-based case-control studies
E. Cordina-Duverger

16:00 > Coffee Break

16:30 > **Short Communications - See details in page 17**

Amphi 4

SYMPOSIUM 12
PERIPHERAL CLOCKS
Chair : Charna Dibner

14:30 > Circadian Medicine for Treatment of Cardiovascular Disease
T. Martino

15:00 > Glucocorticoid receptor activation and the diurnal rhythm of the Thiazide-sensitive NaCl co-transporter
J. Ivy

15:30 > HbA1c levels in Type 2 diabetic individuals predict cellular circadian clock properties
F. Sinturel

16:00 > Coffee Break

16:30 > **Short Communications - See details in page 17**

17:30 - 18:30
PLENARY : KAPPERS LECTURE
WHAT THE MAMMALIAN EYE TELLS THE MAMMALIAN SCN
Chair : Andries Kalsbeek

19:00 - 20:00
PANEL DISCUSSION
PHILOSOPHY OF TIME
Chair : Aurélien Demars

G. Manella

R. Aviram
WEDNESDAY 28 AUGUST

08:45 - 09:00 WELCOME COFFEE

09:00 - 10:00 PLENARY : STOCKGRAND LECTURE
Amphi 1 SHEDDING NEW LIGHT ON DELAYED SLEEP-WAKE PHASE DISORDER
Chair : Debra Skene
S. Rajaratnam

10:15 - 13:00 SYMPOSIUM 13
Amphi 3 METABOLISM : DO CLOCKS CONTROL EVERYTHING?
Chair : Etienne Challet

10:15 Circadian misalignment: adverse health consequences and development of countermeasures
F. Scheer

10:45 Your brain on junk food, interaction with the timing system
S. LaFleur

11:15 Coffee Break

11:45 Restoration of Rhythms in Clock Deficient Mice Relieves their Mania Symptom
E. Zhang

12:15 Short Communications - See details in page 18

Amphi 4 SYMPOSIUM 14
CLOCKS ACROSS LIFE : CIRCADIAN MECHANISMS DURING DEVELOPMENT AND AGEING
Chair : Alena Sumova

10:15 The central clock resilience develops via critical developmental stages
A.Sumova

10:45 Developmental program and environmental reprogramming of mammalian circadian regulation system
K. Yagita

11:15 Coffee Break

11:45 Differential effects of aging on the central circadian clock
S. Michel

12:15 Short Communications - See details in page 18

Amphi 1 SYMPOSIUM 15
CIRCADIAN AND NON-VISUAL EFFECTS OF LIGHT
Chair : Roelof Hut

10:15 A non-canonical inhibitory circuit dampens behavioral sensitivity to light
T. Schmidt

10:45 Synaptic Specializations of Melanopsin- Retinal Ganglion Cells in Multiple Brain Regions Revealed by Genetic Probes for Light- and Electron Microscopy
S. Panda

11:15 Coffee Break

11:45 Time-based dynamics of non-visual effects of light in humans: The importance of exposure duration
S. Lockley

12:15 Short Communications - See details in page 18

13:00 - 14:30 LUNCH BREAK & POSTER SESSION 3
EBRS AGM (Amphi 1) – open to all EBRS members
SYMPOSIUM 16
CLOCKS IN THE REAL WORLD: FROM BEDSIDE TO BIG DATA
Chair: Till Roenneberg

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>The power of actimetry in clock- and sleep-related field studies</td>
</tr>
<tr>
<td>15:00</td>
<td>Circadian information in real time from remote patients for precision chronomedicine</td>
</tr>
<tr>
<td>15:30</td>
<td>Measuring circadian indices in patient populations: tips from cirrhosis</td>
</tr>
<tr>
<td>16:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:30</td>
<td>Short Communications - See details in page 18</td>
</tr>
</tbody>
</table>

SYMPOSIUM 17
MENTAL HEALTH
Chair: Martin Ralph

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>A novel circuit underlies the effects of light on mood in mice</td>
</tr>
<tr>
<td>15:00</td>
<td>Role of circadian clocks in dopaminergic neurodegeneration</td>
</tr>
<tr>
<td>15:30</td>
<td>What is the Role of the SCN in Learning Ability and Disability?</td>
</tr>
<tr>
<td>16:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:30</td>
<td>Short Communications - See details in page 18</td>
</tr>
</tbody>
</table>

SYMPOSIUM 18
THE GUT MICRO BIOME AND THE CIRCADIAN CLOCK
Chair: Isabelle Carre

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>Impact of Circadian and Sleep Disruption on the Human Microbiome</td>
</tr>
<tr>
<td>15:00</td>
<td>(A)rhythmicity of the Human Microbiome in Health and Disease</td>
</tr>
<tr>
<td>15:30</td>
<td>Circadian disruption challenges the resiliency of intestinal microbiota community and intestinal barrier function</td>
</tr>
<tr>
<td>16:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:30</td>
<td>Short Communications - See details in page 18</td>
</tr>
</tbody>
</table>

17:30 - 18:30
PLENARY: GWINNER LECTURE
INTER- AND INTRA-SPECIFIC TEMPORAL PARTITIONING: ACTIVITY PATTERNS AND CHRONOTYPES
Chair: Steven Brown
N. Kronfeld-Schor

19:30
CONGRESS DINNER
THURSDAY 29 AUGUST

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45 - 09:00</td>
<td>WELCOME COFFEE</td>
</tr>
<tr>
<td>09:00 - 10:00</td>
<td>PLENARY LECTURE</td>
</tr>
<tr>
<td></td>
<td>CRYPTOCHROMES INTEGRATE CIRCADIAN RHYTHMS</td>
</tr>
<tr>
<td></td>
<td>WITH METABOLISM AND GENOME PROTECTION</td>
</tr>
<tr>
<td></td>
<td>Chair: Frank Scheer</td>
</tr>
<tr>
<td>10:15 - 13:00</td>
<td>SYMPOSIUM 19</td>
</tr>
<tr>
<td></td>
<td>BIOMARKERS AND THEIR APPLICATION TO CHRONOMEDICINE</td>
</tr>
<tr>
<td></td>
<td>Chair: John Hogenesch</td>
</tr>
<tr>
<td>10:15</td>
<td>> High-accuracy determination of internal circadian time from a single blood sample</td>
</tr>
<tr>
<td>10:45</td>
<td>> Loss of circadian rhythm in critically ill patients: relevant for long-term damage?</td>
</tr>
<tr>
<td>11:15</td>
<td>> Coffee Break</td>
</tr>
<tr>
<td>11:45</td>
<td>> Novel Approaches to Diagnose Circadian Rhythm Disorders</td>
</tr>
<tr>
<td>12:15</td>
<td>> Short Communications - See details in page 19</td>
</tr>
<tr>
<td>Amphi 1</td>
<td>SYMPOSIUM 20</td>
</tr>
<tr>
<td></td>
<td>MOLECULAR MECHANISM III</td>
</tr>
<tr>
<td></td>
<td>Chair: David Virshup</td>
</tr>
<tr>
<td>10:15</td>
<td>> High-throughput discovery of genetic determinants of circadian entrainment and its application in humans</td>
</tr>
<tr>
<td>10:45</td>
<td>> Hacking genetics, wearables and video games to measure and understand human circadian rhythms</td>
</tr>
<tr>
<td>11:15</td>
<td>> Coffee Break</td>
</tr>
<tr>
<td>11:45</td>
<td>> CK1δ/ε regulation of the PER2 phosphoswitch</td>
</tr>
<tr>
<td>12:15</td>
<td>> Short Communications - See details in page 19</td>
</tr>
<tr>
<td>Amphi 3</td>
<td>SYMPOSIUM 21</td>
</tr>
<tr>
<td></td>
<td>EMERGENT RHYTHMS IN THE BRAIN</td>
</tr>
<tr>
<td></td>
<td>Chair: Hugh Piggins</td>
</tr>
<tr>
<td>10:15</td>
<td>> Network-level heterogeneity revealed through developmental patterning of neuropeptide expression in the master circadian clock</td>
</tr>
<tr>
<td>10:45</td>
<td>> Pigment-dispersing factor (PDF) affects different neuronal circuits of the circadian clock in the Madeira cockroach Rhyparobia (Leucophaea) maderae</td>
</tr>
<tr>
<td>11:15</td>
<td>> Coffee Break</td>
</tr>
<tr>
<td>11:45</td>
<td>> Excitation and hyperexcitation in the mammalian master circadian clock: past, present and future</td>
</tr>
<tr>
<td>12:15</td>
<td>> Short Communications - See details in page 19</td>
</tr>
<tr>
<td>Amphi 4</td>
<td>LUNCH BREAK & POSTER SESSION 4</td>
</tr>
<tr>
<td>13:30 - 14:30</td>
<td></td>
</tr>
</tbody>
</table>

K. Lamia
A. Kramer
C. Spies
P. Zee
D. Forger
D. Virshup
J. Evans
J. Plath
M. Belle
14:30 - 17:15 SYMPOSIUM 22
CIRCADIAN MECHANISMS CONTROLLING LEARNING, MEMORY AND COGNITION
Chair : Martin Ralph
14:30 > Melatonin and clock genes – circadian cues for shaping time-of-day-dependent learning efficiency?
J. Stehle
15:00 > Importance of brain oscillations in sleep and memory: similarity and difference between human and rodent
K. Benchenanne
15:30 > A neural basis for time memory
M. Ralph
16:00 > Coffee Break
16:30 > Short Communications - See details in page 19

Amphi 4 SYMPOSIUM 23
CHRONONUTRITION AND CHRONOMOLECULES: FROM CIRCADIAN MECHANISMS TO CIRCADIAN THERAPIES
Chair : Robert Dallmann
14:30 > Targeting Entrainment Pathways to Develop Chronomolecules
A. Jagannath
15:00 > Circadian metabolism and meal timing in humans
J. Johnston
15:30 > Timing of Macronutrient Intake: Underlying Mechanisms and Endocrine Outcomes
O. Froy
16:00 > Coffee Break
16:30 > Short Communications - See details in page 19

Amphi 1 SYMPOSIUM 24
OMICS AND MACHINE LEARNING: AI-DRIVEN APPROACHES TO UNDERSTANDING CIRCADIAN FUNCTION
Chair : Bharath Ananthasubramaniam
14:30 > Using Gene Expression to Tell Time
R. Braun
15:00 > Subcellular Circadian -Oomics: What comes out depends on what goes in…and how you slept
S. Brown
15:30 > From Chronotype GWAS to biology using Integrative Omics
R. Saxena
16:00 > Coffee Break
16:30 > Short Communications - See details in page 19

17:30 - 18:30 PLENARY LECTURE
BUILDING CIRCADIAN MEDICINE IN A PEDIATRIC HOSPITAL
Chair : Francis Levi
J. Hogenesch

18:30 - 19:30 AWARDS AND CLOSING REMARKS
Amphi 1
Molecular Mechanism I
Chair: Florian Heyd

- SC-1 Understanding the molecular mechanisms of FREQUENCY protein isoforms in controlling the Neurospora circadian clock
 J. Guo, et al.
- SC-2 AKT phosphorylation undergoes cell autonomous and clock independent oscillations
 R. Aviram, et al.
- SC-3 Cyclin Dependent Kinase 5 (CDK5) Regulates the Circadian Clock
 U. Albrecht, et al.
- SC-77 Epigenetic control of the mammalian circadian clock by the histone variant H2A.Z.
 H. Bayer, et al.
- SC-78 The Circadian Transcription Factor KLF10 is an Important Regulator of the Carbohydrate responsive transcriptome in Liver
 M. Teboul, et al.

Molecules and circuits controlling REM and NREM cycles (JSC)
Chair: Hiroki Ueda

- SC-4 SIK3 signaling: Exploring the missing link between circadian clock and sleep
 N. Hayasaka, et al.
- SC-5 Circadian permeability of an In Vitro Tri-Culture Model of Blood-Brain-Barrier
 S. Kumar, et al.
- SC-6 Real-Time Breath Analysis Provides New Insights into Metabolism During Sleep
 N. Nowak, et al.

Seasonal Biology
Chair: Valérie Simmoneaux

- SC-7 Understanding the molecular mechanisms underlying photoperiodic time measurement in Drosophila
 A. Abrieux, et al.
- SC-8 Disclosing neuroendocrine mechanisms of seasonality, a step towards genetically modified models.
 C. Quignon, et al.
- SC-9 Photoperiodic programming of the reproductive system in a photoperiodic and opportunistic vole species.
 L. Van Rosmalen et al.
 Y. Mizoro, et al.
- SC-11 Seasonal timing in the Arctic
 D. Appenroth, et al.

The Immune system and daily timing
Chair: Andrew Loudon

- SC-12 Chronic Jet Lag increases the dissemination and metastatic potential of mammary cancer cells through an increase of immune tolerance and chemoattract
 E. Hadadi, et al.
- SC-13 Alternating light-dark cycles aggravate atherosclerosis through increased attraction of monocytes to the vessel wall
 S. Kooijman, et al.
- SC-14 Experimental inflammatory arthritis rewire circadian metabolic controls across the body
 P. Downton, et al.

Non-photic entrainment : novel connections from environment to clocks
Chair: Shigenobu Shibata

- SC-15 Time-restricted feeding is effective in the BACHD mouse model of Huntington’s disease
 Y. Tahara, et al.
- SC-16 Synchronization of the Hippocampal Circadian Clock
 K. Suchmanova, et al.
- SC-17 Temperature and light integration in the Drosophila clock
 E. Buhl, et al.

Non-circadian Rhythms
Chair: Helen Causton

- SC-18 Understanding the Temporal Regulation of Metabolism in Yeast
 H. Causton, et al.
- SC-19 Setting the pace: Host rhythmic behaviour and gene expression patterns in symbiotic cnidian Aiptasia are determined largely by Symbionts
 O. Levy, et al.
- SC-20 Molecular encoding of the photoperiod and seasonal timing in Drosophila
 E. Tauber, et al.
Amphi 1 Molecular Mechanism II
Chair: Urs Albrecht

SC-21 Distinct control of PERIOD2 degradation and circadian rhythms by the oncoprotein and ubiquitin ligase MDM2
C. Finkielstein, et al.

SC-22 The circadian clock promotes spermatogonial differentiation and fertilization through retinoic acid signaling
H. Wang, et al.

SC-23 Rev-Erb? and Photoreceptor Outer Segments modulate the Circadian Clock in Retinal Pigment Epithelial Cells
N. Milicevic, et al.

Amphi 3 Clocks, sleep and health (ESRS & EBRS)
Chairs: Debra Skene & Tom de Boer

SC-24 Acute sleep deprivation causes long-term damping of cortical clock-gene rhythms
M. Jan, et al.

SC-25 Circadian VIPergic neurons of the suprachiasmatic nuclei directly control siesta sleep
S. Pierre Ferrer, et al.

SC-26 Melatonin structures the sleep/wake cycle by modulating the sleep homeostatic pressure
P. Kim, et al.

Amphi 4 Microbial clocks
Chair: Martha Merrow

SC-27 Individual cyanobacterial circadian rhythms under low temperature conditions
I. Hiroshi, et al.

SC-28 Response of immune system to selected Escherichia coli strains impacts the circadian clock
U. Kovac, et al.

SC-29 BioDare2: a community resource for online analysis and sharing of rhythmic data
T. Zielinski, et al.

Amphi 3 Clock networks in the brain
Chair: Rae Silver

SC-30 Spatio-temporal organization of clock cell activity in the suprachiasmatic nuclei of freely moving mice.
L. El Cheikh Hussein, et al.

SC-31 Effects of the isolation of suprachiasmatic nucleus on circadian rhythmicity
S. Miyazaki, et al.

SC-32 Topological pacemaker organization and roles of AVP and VIP neurons as revealed by genetic dissection of circadian networks in the SCN.
M. Izumo, et al.

Amphi 1 The clock and public health
Chair: Charles Czeisler

SC-33 Restoring the sleep disruption by blue light emitting screen use use in adolescents: a randomized controlled trial
A. Kalsbeek, et al.

SC-34 Night shift alertness and performance are deferentially influenced by sleep duration and wake duration in older adults
C. Isherwood, et al.

SC-35 Rotating night-shift work and hematologic cancers in the Nurses’ Health Study and Nurses' Health Study II.
K. Papantoniou, et al.

Amphi 4 Peripheral clocks
Chair: Charna Dibner

SC-36 Co-existing feedback loops generate tissue-specific circadian rhythms
H. Herzel, et al.

SC-37 Hypoxia induces a time and tissue-specific response that elicits inter-organ circadian clocks-desynchrony
G. Manella, et al.

SC-38 Towards the Timed Delivery of Drugs Using Smart Nanoparticles
R. Dallmann, et al.
Amphi 3 **Metabolism: do clocks control everything?**
Chair: Etienne Challet

- **10:15**
 - SC-39 Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome
 - *E. Manoogian, et al.*
 - SC-40 Illuminated night alters nocturnal sleep and negatively affects physiology and metabolism in diurnal zebra finches
 - *T. Batra, et al.*
 - SC-41 Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock
 - *A. Chaix, et al.*

Amphi 4 **Clocks across life: circadian mechanisms during development and ageing**
Chair: Alena Sumova

- **10:15**
 - SC-42 The methyl cycle is a conserved regulator of biological clocks.
 - SC-43 Effects of long-term time-restricted feeding of a high-fat diet on aging in senescence-accelerated mouse
 - *O. Hideaki, et al.*
 - SC-44 Diverse approaches to image circadian clock function in vivo
 - *M. Sato, et al.*

Amphi 1 **Circadian and non-visual effects of light**
Chair: Roelof Hut

- **14:30**
 - SC-45 Light at night affects energy metabolism in rodents depending on the species, wavelength and time of the exposure
 - *A. Masis-Vargas, et al.*
 - SC-46 Rods play a major role in the light-induced phase shift of the retinal clock in mammals
 - *O. Dkhissi Benyahya, et al.*
 - SC-47 High light intensity forced desynchrony protocol reveals different pathways for alerting effects of light.
 - *R. Lok, et al.*

Amphi 1 **Clocks in the real world: from bedside to big data**
Chair: Till Roenneberg

- **14:30**
 - SC-48 Effect of social jetlag on sleep quality
 - SC-49 Are models ready for predicting circadian phase in real-world settings?
 - *J. Stone, et al.*
 - SC-50 Comparison of sleep onset and offset times from a single questionnaire, actigraphy, and daily sleep diary data in a college population
 - *E. Klerman, et al.*

Amphi 3 **Mental Health**
Chair: Chris Colwell

- **14:30**
 - SC-51 Bmal1 deletion in microglia facilitates mice to cope with metabolic and cognitive challenges.
 - *C.-X. Yi, et al.*
 - SC-52 Circadian Rest-Activity Patterns in Bipolar Disorder and Borderline Personality Disorder
 - *N. Mcgowan, et al.*
 - SC-53 Social Jet Lag: potential contributor to health disparity by race/ethnicity in the United States
 - *Y. Park, et al.*

Amphi 4 **The gut micro biome and the circadian clock**
Chair: Isabelle Carre

- **14:30**
 - SC-54 Underground clocks - Rhythmicity in the plant rhizosphere
 - *I. Carre, et al.*
 - SC-55 Circadian regulation of the host response to fungal infections
 - *M. M. Bellet, et al.*
 - SC-56 Evolutionary diversity of Kai-protein clock system in cyanobacteria
 - *A. Mukaiyama, et al.*
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Chair</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:15</td>
<td>Amphi 1</td>
<td>Biomarkers and their application to chronomedicine</td>
<td>Chair: John Hogenesch</td>
<td>M. Kneifel, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-57</td>
<td>miRNAs as potential biomarkers for the identification of night-shift workers at risk of developing breast cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>Amphi 3</td>
<td>Molecular Mechanism III</td>
<td>Chair: David Virshup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC-61</td>
<td>MYC-associated factor MAX is an essential repressor of clock core network</td>
<td></td>
<td>O. Blazevits, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-62</td>
<td>Müller cells as a new player in the retinal clock</td>
<td></td>
<td>N. Mazzaro, et al.</td>
</tr>
<tr>
<td></td>
<td>Amphi 4</td>
<td>Emergent rhythms in the brain</td>
<td>Chair: Hugh Piggins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC-63</td>
<td>Timekeeping in the hindbrain: novel circadian oscillators in the mouse area postrema and nucleus of the solitary tract</td>
<td></td>
<td>L. Chrobok, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-64</td>
<td>Circadian circuits underlying daily rhythms in corticosterone release</td>
<td></td>
<td>J. Jones, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-65</td>
<td>The Role of SCN VIP cells in daily physiological control.</td>
<td></td>
<td>S. Paul, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-66</td>
<td>Circadian rhythmicity of cardiac arrhythmias in a computational model of ventricular myocytes</td>
<td></td>
<td>C. Diekman, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-67</td>
<td>Multiple, Large Soma-Soma Ephapses Connect Clustered SCN Core Neurons NonSynaptically</td>
<td></td>
<td>M. Czeisler, et al.</td>
</tr>
<tr>
<td></td>
<td>Amphi 3</td>
<td>Circadian mechanisms controlling learning, memory and cognition</td>
<td>Chair: Martin Ralph</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC-68</td>
<td>Early circadian dynamics of time perception predict antidepressant response to sleep deprivation combined with light therapy in bipolar depression</td>
<td></td>
<td>T. Yoshiike, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-70</td>
<td>Volatile cues from the colony and substrate born vibrations entrain circadian rhythms in honeybees and may mediate social synchronization</td>
<td></td>
<td>O. Siehler, et al.</td>
</tr>
<tr>
<td></td>
<td>Amphi 4</td>
<td>Chrononutrition and chronomolecules: from circadian mechanisms to circadian therapies</td>
<td>Chair: Robert Dallmann</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC-71</td>
<td>Selective MT1 melatonin receptor inverse agonists identified using the MT1 crystal structure modulate circadian phase and re-entrainment in C3H mice.</td>
<td></td>
<td>M. Dubocovich, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-72</td>
<td>Discovery of a CLOCK-binding small molecule that enhances circadian rhythm</td>
<td></td>
<td>I. Kavakli, et al.</td>
</tr>
<tr>
<td></td>
<td>Amphi 1</td>
<td>Omics and machine learning: AI-driven approaches to understanding circadian function</td>
<td>Chair: Bharath Ananthasubramaniam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC-74</td>
<td>A role for mammalian PER proteins in guarding genome stability</td>
<td></td>
<td>F. Andriani, et al.</td>
</tr>
<tr>
<td></td>
<td>SC-75</td>
<td>Continuous real time predictability of individual circadian phase during daily routine for medical applications of circadian clocks</td>
<td></td>
<td>S. Komarzynski, et al.</td>
</tr>
</tbody>
</table>
POSTERS

P-1 Influence of photoperiod on central appetite regulation in captive Svalbard rock ptarmigan (Lagopus muta hyperborea)
V. Melum, et al.

P-2 High-throughput discovery of genetic determinants of circadian entrainment
T. Zhang, et al.

P-3 Seasonal changes in pituitary mRNA expression of LH? collocated with testis LhcgR in desert rodent the Libyan Jird (Meriones libycus)
R. Boufermes, et al.

P-4 The relationship between social jetlag and menstrual symptoms among Japanese university students.
Y. Komada, et al.

P-5 Lethality caused by time-restricted feeding can be rescued by impairing the suprachiasmatic nucleus function
Z. Huang, et al.

P-6 Association between disrupted sleep-wake rhythms and poor sleep quality is moderated by sex
S. Raman, et al.

P-7 Circadian BMAL1DHSF1Dp53 interplay regulates UV-triggered clock synchronization to evoke stress protection
G. Kawamura, et al.

P-8 Initial protein events commonly pivotal for various environments/stresses- triggered cellular clock synchronization
T. Tamaru, et al.

P-9 The miR-17 family of microRNAs have a strong influence on the circadian clock.
A. Ashton, et al.

P-10 Quantitative live imaging of VENUS::BMAL1 in vivo reveals unexpected dynamics of the master circadian clock regulator
N. Smyllie, et al.

P-11 First characterization of the circadian clock in pea aphids (Acyrthosiphon pisum)
F. S. Colizzi, et al.

P-12 Real time recording of clock gene expression in peripheral tissues of freely moving mice
K. Hamada, et al.

P-13 Functional D-box sequences and their roles in the circadian clockwork
Y. Asano, et al.

P-14 Dose-response relationship of subjective and objective visual comfort with melanopic irradiance
M. Mînch, et al.

P-15 Daytime Exposure of Blue-light Affected the Circadian Phase of the Rectal Temperature in Humans
I. Nakamoto, et al.

P-16 Effect of the Cognitive Performance Tasks in Simulated Night Shift Work
S. Uiji, et al.

P-17 Melanopsin expression changes according to photoperiod integration
B. Leclercq, et al.

P-18 cAMP response element binding protein (CREB) modulates circadian oscillation of Glycoprotein 2 (Gp2) gene expression in Peyer’s patches of mice.
N. Kusunose, et al.

P-19 Nardilysin is a critical component of the mammalian circadian negative feedback loop
H. Yoshinori, et al.

P-20 Development of a microchip for single SCN cell culture environment
S. Watanabe, et al.

P-21 Effect of the long non-coding RNA Neat1 knock-down on the circadian transcriptome in a rat pituitary cell line
A. Jacq, et al.

P-22 Rats prenatally exposed to lipopolysaccharide show changes in circadian rhythms and behaviour
V. Spisskav, et al.

P-23 The role of the Jak-STAT signalling pathway in the molecular clock of SCN astrocytes and glioblastoma cells
E. Filipovska, et al.

P-24 Topology of the Mammalian Suprachiasmatic Nucleus: Anatomical and Transcriptomic Analysis
E. Morris, et al.

P-25 The use of molecularly targeted drugs in cancer chronotherapy
M. Ikeda, et al.

P-26 Characteristics of sleep structure among normal young adults with objective daytime sleepiness
H. Narisawa, et al.
P-27	Circadian Clock Gene Expression in Human Primary Pericytes in vitro	V. Mastrullo, et al.
P-28	The role of the STAT3 signaling for melatonergic synthetic pathway in the rat pineal gland	S. Moravcova, et al.
P-29	Evidence of the involvement of the CREB-regulated transcription coactivator (CRTC1) in the circadian regulation of energy homeostasis	C. Rossetti, et al.
P-30	Evidence for a dysfunction and disease-promoting role of the circadian clock in diabetic retinopathy	P. Vancura, et al.
P-31	Endogenous timekeeping in the Arctic charr (Salvelinus alpinus L.): linking photoperiod and life history events	G. Grenier, et al.
P-32	A Novel Association Between Social Jetlag and Glycemic Control in Adults with Type 2 Diabetes.	R. Kelly, et al.
P-33	Impact of weekly shift of the light-dark cycle on circadian physiology and behavior in mice	G. Vanotti, et al.
P-34	The clock gene DEC2 contributes to VEGF up-regulation by modulating HIF1α protein levels in hypoxic retinal glial cells.	T. Akamine, et al.
P-36	A-to-I RNA editing of AMPA receptors in the rat master clock and other brain structures under different light conditions	H. Kyblerova, et al.
P-37	Food Addiction Seasonality	M. Borisenkov, et al.
P-38	Circadian rhythms in utilisation of 63 carbon energy sources by pre-adipocytes expose two clusters with anti-phasic utilisation peak times.	C. Martin, et al.
P-39	Roles of GABA in Suprachiasmatic AVP Neurons on Female Reproductive Functions	M. Sugiyama, et al.
P-40	Distinct properties of circadian clocks in classically and alternatively polarized macrophages	P. Honzlova, et al.
P-41	The effect of chronic prenatal and postnatal morphine or methadone exposure on developing circadian system in Wistar rats	D. Pacesova, et al.
P-43	Bmal1-deficiency affects astrocyte actin cytoskeleton	B. Schwarz-Herzke, et al.
P-44	Analysis of circadian oscillations in pancreatic ductal adenocarcinoma tumour cells	S. Koutsouli, et al.
P-45	Seasonal and circadian rhythms in the human immune system	J. Leung, et al.
P-46	Bmal1-deficiency affects the astrocyte morphology and glial synaptic coverage of the hippocampal mossy fiber synapse	A. Ali, et al.
P-47	The expression pattern of the neuropeptide Pigment-Dispersing Factor in drosophilids correlates with their activity pattern under long photoperiods	P. Deppisch, et al.
P-48	The class 3 PI3K controls the circadian clock function	C. Alkhoury, et al.
P-49	Does a red house affect the synchronization of rhythms in spontaneous locomotor activity in BMAL1-deficient mice?	M. Oeztuerk, et al.
P-50	Does the circadian rhythm of NOGO-A in mouse hippocampal neurons affect the signaling of growth cone plasticity?	L. Gabel Martinez, et al.
P-51	Diagnosis of hypersomnia in mother and daughter: Use of circadian markers to improve diagnostic practice	K. Skalova, et al.
P-52 Seasonal regulation of the IncRNA LDAIR modulates self-protective behaviors during the breeding season T. Nakayama, et al.

P-53 Effect of time-of-day and prior wake on electroencephalographic Delta and Beta power in 30-min naps during 30 continuous hours of 90-minute «days» E. Klerman, et al.

P-54 Two coupled molecular loops in the mouse circadian system: Implication in entrainment S. Nishide, et al.

P-56 The role of circadian clock in carcinogenesis: insights from 2D and 3D colorectal cancer models A. Basti, et al.

P-59 The permeability of the Brain-hypothalamus barrier exhibits daily fluctuations B. Rodriguez-Cortes, et al.

P-60 Evening twilight orientation of migratory redheaded bunting, Emberiza bruniceps: the role of setting sun as visual cue in directional preferences T. Tyagi, et al.

P-61 Scallopign or phase-trapping of the human circadian system is independent of the phase-dependent light sensitivity K.-I. Honma, et al.

P-63 Endocannabinoids modulate NMDAR-mediated entrainment in the mouse SCN M. Sladek, et al.

P-64 Bmal1 deficiency affects circadian light entrainment A. Ali, et al.

P-65 Peptidomics of the circadian clock in the Madera cockroach S. Neupert, et al.

P-68 Temperature entrainment of the circadian clock in the linden bug Pyrrhocoris apterus M. Kaniewska, et al.

P-69 Shift of the dead zone during jet lag follows a slow shift in the shell region of the suprachiasmatic nucleus Y. Shigeyoshi, et al.

P-70 Circadian and noncircadian Mechanisms of Regulation by the DBHS Protein Family E. Moriggi, et al.

P-71 Covert swimming behaviour rapid eye movement (r.e.m) and neuropsine in circadian circulmolar and circannual cycle C. J. Van Dam, et al.

P-73 PERIOD1 regulates the adaption to changes of the light-cycle by buffering the strength of the light input signal within the master circadian clock P. Bechstein, et al.

P-74 Enhanced electrical output of the SCN clock by behavioral activity feedback in the day-active grass rat (Arvicanthis ansorgei) R. Schoonderwoerd, et al.

P-75 A PDZ scaffolding/CaM-mediated pathway in Cryptochrome signals to the circadian clock G. Mazzotta, et al.

Carbachol modulates intergeniculate leaflet neuronal network of the rat
K. Palus-Chramiec, et al.

Modeling circadian regulation of ovulation timing: Age-related disruption of estrous cyclicity
T. Ohara, et al.

Age-related microglial alterations and lipofuscin-deposition in the hippocampus of clock gene Period1-deficient mice
A. Rami, et al.

The influence of skeletal muscle thermogenesis on the regulation of body temperature during ketogenic diet-induced hypothermia
R. Nakao, et al.

Circadian rhythms in the Dermis and Epidermis
B. Ananthasubramaniam, et al.

Population genomics of Drosophila reveals extensive latitudinal clinal variation in clock genes
E. Tauber, et al.

SMAD4 affects the circadian clock triggers TGFβ signaling and impacts migration and drug response in cancer cells.
Y. Li, et al.

Genome-wide association analysis reveals expression quantitative trait loci (eQTL) of photoreceptors genes in the jewel wasp Nasonia
E. Tauber, et al.

The Effect of Environmental Circadian Disruption on Kidney Injury in Spontaneously Hypertensive Stroke Prone Rats
A. Hill, et al.

Assessing the impact of light-at-night on sleep, circadian function and physical and mental well-being
M. Cleray Gaffney, et al.

The influence of artificial light on the eco-physiology of diurnal and nocturnal rodent species
A. Benjamin, et al.

Melatonin and the heart circadian clock of euglycemic and type 2 diabetic male rats

Extreme chronotypes: differences in morning and evening physical and cognitive performance
K. Cervena, et al.

Deletion of Bmal1 within the mouse striatal clock affects behaviour and motor function
K. Schottner, et al.

Circadian Clock-Related Protein NONO Alters Mitochondrial Respiration, Uncoupling, and Insulin Secretion
A. Rawleigh, et al.

Modeling the regulation of complex behavioral rhythms using the neural circuits underlying sensorimotor integration in the brain
M. Ralph, et al.

A Mathematical Model of a Dopamine Regulated Circadian Oscillator
A. Stinchcombe, et al.

Modelling to investigate role of protein interactions and transcription in generating circadian rhythms
A. Koch, et al.

Circadian regulation of the RNA binding protein FXR1
T. Silva, et al.

Increased Plasma Melatonin in Presymptomatic Huntington Disease Sheep (Ovis aries): Compensatory Neuroprotection in a Neurodegenerative Disease?
D. Skene, et al.

Cross-regulation of circadian rhythm and kidney damage
C. Rey Serra, et al.

Quantifying zeitgeber strength in mice Ð the zeitgeber desynchrony (ZD) paradigm
I. Heyde, et al.

Stromelysin 1 (MMP-3) immunodetection in the seminal vesicle of the Libyan jird (Meriones libycus) during the seasonal reproductive cycle and after orchietomy
B. Mansouria, et al.

Sleep and activity phases change with age independently of state of industrialisation
L. Pilz, et al.

Different cortical neurons are activated during waking and paradoxical sleep in contrast to neurons of the SCN: a study using TRAP method
R. Yamazaki, et al.
P-102 Daily and Estral regulation of RFRP neurons in mice
E. Angelopoulou, et al.

P-103 Probing the genetic/epigenetic basis of inter-cellular circadian period variation in human-U2OS cells
L. Nikhil, et al.

P-104 Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency (Dick, Bechstein, Jilg, Saade, Tosini, Rami, Zemmar, Stehle)
M. Dick, et al.

P-105 Diurnal variation of hunger in healthy older adults
C. Isherwood, et al.

P-106 Inflammamosome expression in the hippocampus under normal light conditions and circadian disruption
S. Johann, et al.

P-107 Impact of daytime light intensity on the circadian rhythms in the diurnal rodent Rhabdomys pumilio
B. Bano-Otalora, et al.

P-108 Molecular characterization of photoperiod-dependent development of migratory capacity in Atlantic salmon
A. West, et al.

P-109 A Robust Model for Circadian Redox Oscillations
M. Del Olmo, et al.

P-110 In vivo Cell Specific Characterization of AVP Neurons in the Mouse Suprachiasmatic Nucleus
A. Stowie, et al.

P-111 Spiroloacton restore sleep architecture case report
D. Cugy, et al.

P-112 Roles of Ubiquitination of CRY protein by FBXL3 and FBXL21
H. Yoshitane, et al.

P-113 Individual dynamics of circadian genes expression in participants of the International Circumpolar Flight
S. Gorokhova, et al.

P-114 Enhanced circadian responses to ÒyellowÓ rather than ÒblueÓ light.
J. Mouland, et al.

P-115 Thyroid hormone regulation of anterior pituitary circadian clock : Consequences of hypothyroidism and hyperthyroidism
P. Bargi De Souza, et al.

P-116 The effect of vasopressin signal on the re-entrainment speed of circadian locomotor activity under jet lag
Y. Yamaguchi, et al.

P-117 Placental clocks and their response to glucocorticoids
V. Cecmanova, et al.

P-118 Regulation of NOGO-A: A possible link between daytime dependent memory formation and hippocampal clock gene expression
F. Knop, et al.

P-119 Social jetlag is negatively associated with cardiac control during sleep
A. Sudy, et al.

P-120 A New Insight of Tooth Growing ~Ultradian Incremental Growth Lines in Mouse Molar Dentin ~
R. Ono, et al.

P-121 Timing effect of intake of inulin and inulin containing food/ vegetables on the continuous blood glucose level, fecal short chain fatty acids and microbiota in mice and humans
S. Shibata, et al.

P-122 The effect of simulated night shifts on the circadian regulation of the human metabolome
L. Kervezee, et al.

P-123 Chronotype and shift type modulate sleep duration during rotating shift work in police officers on patrol
L. Kervezee, et al.

P-124 Inter- and intra-patient circadian variabilities in eight urinary modified nucleosides excretion in patients with metastatic colorectal cancer
S. Dulong, et al.

P-125 Effects of no-night light environment on gut physiology and microbiota of female zebra finches (Taeniopygia guttata)
I. Malik, et al.
Distinct Biological roles of Inducible cAMP Early Repressor ICER: a Circadian Aspect

High-latitude drosophilids do not maintain circadian behavioural rhythmicity under constant darkness

Glucose uptake and GLUT1 expression exhibit a circadian rhythm in the arcuate nucleus of the rat

Immunocytochemical demonstration of the TSH receptor (TSHR) in transfected NIH/3T3 cells, mediobasal hypothalamus and thyroid gland of C3H mice

The circadian casein kinase 1? tau mutation impacts on circadian phase and pulmonary inflammatory response in mice

Does a poorly-functioning circadian clock constitute a risk factor for (genetically determined) retinal disease?

High-latitude drosophilids do not maintain circadian behavioural rhythmicity under constant darkness

Differential phase resetting of metabolic markers relative to central clock markers during simulated shift work

Light during the day along with feeding during darkness is necessary to maintain metabolic health in rats

Exposure to dim light at night can promote pro-inflammatory state in rats

Glucose uptake and GLUT1 expression exhibit a circadian rhythm in the arcuate nucleus of the rat

Period 1 inactivation alters behavioral and morphological phenotypes in C3H mice

Chaperone-mediated autophagy regulates the circadian clock

Entrainment of Circadian System and Sleep to Extremely Long Photoperiods in Modern Life and Nature

Repetitive senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time

Light-dark cycle phase shifts dampen peripheral clocks, but chronic dampening does not result in obesity or glucose intolerance

Circadian rhythm of glucagon-like peptide 2 immunoreactivity in the rat dorsomedial hypothalamus

Investigating night shift work and breast cancer risk within the Nightingale Study: first results and methodological considerations.

Altered light induced EGR1 gene expression in the SCN of PACAP deficient mice

Social jetlag and prostate cancer incidence in albertaõs tomorrow project: A prospective cohort study

Early chronotype associates with advanced activity rhythms and circadian phase in a small rural town in Brazil (the Baependi Heart Study cohort)

The effect of timed food availability and intraspecific interaction on free-running period in golden spiny mice
The role of a light-receptive Cryptochrome in the circalunar clock of Platynereis dumerilii

Circadian misalignment and low light exposure are associated to depressive symptoms in rural communities (Quilombos) of southern Brazil

Relationships between Melatonin Suppression by Light and Circadian Rhythm in Children

Effect of exogenous melatonin on sleep quality and duration among permanent night workers

Two different photoreceptors are required for circalunidian timing of swarming onset in Platynereis dumerilii

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

The thyroid clock is sustained in VPAC2 receptor knockout mice

Average chronotype of countries in the Greenwich time zone in winter and summer

Circadian misalignment and low light exposure are associated to depressive symptoms in rural communities (Quilombos) of southern Brazil

Two different photoreceptors are required for circalunidian timing of swarming onset in Platynereis dumerilii

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

Optimizing circadian phase prediction using individual differences in light sensitivity

The thyroid clock is sustained in VPAC2 receptor knockout mice

The role of a light-receptive Cryptochrome in the circalunar clock of Platynereis dumerilii

Effect of exogenous melatonin on sleep quality and duration among permanent night workers

SCN entrains retinal circadian rhythm through an adrenal glucocorticoid

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

The thyroid clock is sustained in VPAC2 receptor knockout mice

Average chronotype of countries in the Greenwich time zone in winter and summer

Circadian misalignment and low light exposure are associated to depressive symptoms in rural communities (Quilombos) of southern Brazil

Two different photoreceptors are required for circalunidian timing of swarming onset in Platynereis dumerilii

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

Optimizing circadian phase prediction using individual differences in light sensitivity

The thyroid clock is sustained in VPAC2 receptor knockout mice

The role of a light-receptive Cryptochrome in the circalunar clock of Platynereis dumerilii

Effect of exogenous melatonin on sleep quality and duration among permanent night workers

SCN entrains retinal circadian rhythm through an adrenal glucocorticoid

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

The thyroid clock is sustained in VPAC2 receptor knockout mice

Average chronotype of countries in the Greenwich time zone in winter and summer

Circadian misalignment and low light exposure are associated to depressive symptoms in rural communities (Quilombos) of southern Brazil

Two different photoreceptors are required for circalunidian timing of swarming onset in Platynereis dumerilii

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

Optimizing circadian phase prediction using individual differences in light sensitivity

The thyroid clock is sustained in VPAC2 receptor knockout mice

The role of a light-receptive Cryptochrome in the circalunar clock of Platynereis dumerilii

Effect of exogenous melatonin on sleep quality and duration among permanent night workers

SCN entrains retinal circadian rhythm through an adrenal glucocorticoid

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)

The thyroid clock is sustained in VPAC2 receptor knockout mice

Average chronotype of countries in the Greenwich time zone in winter and summer

Circadian misalignment and low light exposure are associated to depressive symptoms in rural communities (Quilombos) of southern Brazil

Two different photoreceptors are required for circalunidian timing of swarming onset in Platynereis dumerilii

The effects of time-restricting eating on metabolic syndrome — A trial in the Swiss population (SwissChronoFood)
P-174 Individual variability in sleep and circadian patterns amongst elite Australian Football League (AFL) athletes

E. Facer-Childs, et al.

P-175 Sleep deprivation in pregnant Wistar rats causes methylation of circadian genes in hypothalamus of the offspring

D. Ehichioya, et al.

P-176 Bumblebee workers give up sleep to tend brood that is not their own offspring

G. Bloch, et al.

P-177 Body temperature regulated alternative splicing triggering NMD controls rhythmic gene expression

F. Heyd, et al.

P-178 Chromatin state rhythms in mammalian circadian clock establishment and function.

K. Padmanabhan, et al.

P-179 Consequences of chronodisruption relates to genetic background of rats

M. Zeman, et al.

P-180 The class 3 PI3K controls the circadian clock function

G. Panasyuk, et al.

P-181 Evolution of objective wakefulness and sleep pressure buildup during controlled extended wakefulness in sleepy adult ADHD patients

J. Taillard, et al.

P-182 Circadian rhythmicity of visual discomfort in humans: neurobiological and photobiological correlates

I. Daguet, et al.

P-183 Interaction between circadian clock, melatonin and apoptosis in rat white retroperitoneal adipose tissue

T. Costa, et al.

P-184 Living without temporal cues: A case study

M.-A. Bonmati-Carrion, et al.

P-185 Escaping Circadian Regulation: An Emerging Hallmark of Cancer

A. Relogio, et al.

P-186 Determining light intensity, timing and type of visible and circadian light from an ambulatory circadian monitoring device.

M.-A. Bonmati-Carrion, et al.

P-187 Ambulatory circadian monitoring for chronotype assessment

M.-A. Bonmati-Carrion, et al.

P-188 Time for a drink? Novel oscillator properties in the thirst centres of the brain

R. Northeast, et al.

P-189 Electrochromic dynamic filters: a new window for reducing chronodisruptive effects of blue light at night

M.-A. Bonmati-Carrion, et al.

P-190 Circadian Clock Disruption Promotes Cardiac Cell death During Hypoxic Injury

L. Kirshenbaum, et al.

P-191 The Forebrain Synaptic Transcriptome is Organized by Clocks but its Proteome is Driven by Sleep

S. B. Noya, et al.

P-192 Colorimetry and Circadian effects: review on models and methodology to combine them

T. Merelle, et al.

P-193 A highly selective filter of circadian light improves sleep quality and limits the melatonin suppression induced by light at night

C. Barrau, et al.